Skip to main content

 

Data Strategy & Data Governance ist der Schlüssel zu einer nachhaltig datengesteuerten Organisation

- Data Insight Driven Company -

Eine Data Strategy als integraler Baustein einer Unternehmensstrategie unterstützt maßgeblich das Erreichen von Prozess- und Produktzielen, sichert die Compliance-Konformität, steigert den Durchsatz und unterstützt Organisationen in der Transformation zu einer datenerkenntnisorientierten Kultur (Data Insight Driven Culture).

Organisationen sichern somit ihre Wettbewerbsfähigkeit und können diese durch eine gesteigerte Datenintelligenz und Datenkompetenz (Data Literacy) weiter ausbauen. 

 

Data Governance & Data Intelligence - Empower your organization to Data Driven Culture

Data Exploration & Prototyping von KPI/Dashboards: Sichere Projektergebnisse & ein valides Reporting

Data Quality Management Online-Konferenz v. 02.12.2021

Der Vortrag zum Thema „Data Exploration & Prototyping von KPI und Dashboards – sichere Projektergebnisse und ein valides Reporting“ zeigte auf, wie FIEGE mit dem Rapid Data Performance Simulation (RDPS) Verfahren Investitionen in Data Analytics und Data Driven Company ganz objektiv nach Erfolgswahrscheinlichkeiten auswählt – und die entsprechenden Projekte anschließend nachhaltig zum Erfolg führt.


Data Profiling - Daten endlich richtig verstehen & beurteilen

Erfahrungsbericht Rapid Data Performance Assessment (RDPA)

(Webinar vom 19.01.2021)


Datenqualität - Voraussetzung für ein funktionierendes Qualitäts-Management-System

(Control 2016, DGQ Kunden-Foren, Stuttgart, 27.04.2016)

Zu den Vortragsfolien >>>


Theory of Constraints - Engpassermittlung mit InfoZoom

(InfoZoom Best Practice Day, Schloß Birlinghoven, St. Augustin, 08.11.2012)


Logikbäume: Mehr Transparenz zur Wirkung schlechter Datenqualität auf Unternehmensziele

Mit den effektiven Denkprozessen aus der TOC (Theory of Constraints) Durchbruchslösungen im Datenqualitätsmanagement schaffen

Ein Bewusstsein dafür, dass ein dringender Handlungsbedarf besteht ein übergreifendes und nachhaltiges DQM einzuführen, ist in vielen Organisationen noch gering ausgeprägt.

Wenn sich um das Thema Datenqualität gekümmert wird, dann meist auf lokale Einheiten beschränkt und situativ bedingt. Je nach Handlungsdruck werden immer wieder Einzelmaßnahmen durchgeführt. In der Regel stört schlechte Datenqualität den Flow von Prozessen und es erfordert immer wieder Nachbearbeitungsschleifen im laufenden Betrieb, bis ein Prozess effektiv abgeschlossen werden kann. Zusätzlich stören immer wieder die ad hoc initiierten Datenkorrekturmaßnahmen den Regelbetrieb.

Copyright © 2014 - 2023 by Marco Geuer
The Data Economist | Advisory, Impulse Talks, Training
Establishing Sustainable Data Insights Driven Cultures
the-data-economist.de | business-information-excellence.de

Wir nutzen Cookies auf unserer Website. Einige von ihnen sind essenziell für den Betrieb der Seite, während andere uns helfen, diese Website und die Nutzererfahrung zu verbessern (Tracking Cookies). Sie können selbst entscheiden, ob Sie die Cookies zulassen möchten. Bitte beachten Sie, dass bei einer Ablehnung womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen.