Wer "ja" zur Digitalisierung sagt, muss auch "ja" zu besserer Datenqualität sagen
"76% aller Organisationen glauben, dass ungenaue Daten ihre Fähigkeit behindert, ein herausragendes Kundenerlebnis zu bieten (Experian, DQ-Studie 2016)."
Alles deutet darauf hin, dass wir zukünftig immer stärker Sprachassistenzsysteme nutzen werden. Der prominenteste Vertreter ist Siri. Mit dem zunehmenden Erfolg zogen Google und Amazon nach. Im Bereich der Daten-Analyse ist der bekannteste Vertreter Watson von IBM. Weitere werden sicherlich folgen.
Wie Data Governance zum Innovator wird und Mehrwert liefert
Viele Unternehmen wandelten sich in den letzten Jahren zu agilen Organisationsformen, um sich den Herausforderungen von schnellen Anforderungsänderungen besser stellen zu können. Auch das Unternehmen, für welches ich tätig bin, befindet sich mitten in diesem Wandel. Hinzu kommt, dass Daten und datengetriebene Prozesse immer stärker im Fokus stehen. Wer einen Vorsprung in der Datenintelligenz erlangt und diesen optimal zu nutzen weiß, erlangt auch einen erfolgskritischen Wettbewerbsvorsprung, den es stetig auszubauen bzw. auf lange Sicht zu halten gilt.
Wie Organisationen ihre Daten in Geld bewerten können und warum Data Governance sich selbst finanziert.
Viele Unternehmen hadern noch mit dem Gedanken eine Data Governance einzuführen und fragen sich, welchen Mehrwert hat eigentlich Data Governance? Natürlich kann man jetzt sagen, was gibt es da noch zu überlegen. Wer im Zuge der Digitalisierung wettbewerbsfähig bleiben möchte, kommt an einer Data Strategy und der Einführung einer Data Governance nicht vorbei. Zumindest liest man das permanent in der Fachpresse und hört es ständig von vielen Beratern. Andererseits ist es absolut berechtigt in diesem Zusammenhang die ökonomische Frage zu stellen, welchen Mehrwert in Geld bringt eine Data Governance der Organisation und wieviel bin ich bereit zu investieren bzw. wie wird mein ROI (Return On Invest) aussehen.
Ergebnisse zum Thema Datenqualität aus der Studie „BIG DATA Future – Chancen und Herausforderungen für die deutsche Industrie“, 02/2015 v. MHP, a Porsche Company.
Die Studie beantwortet die Frage, wo genau die Industrieunternehmen in Deutschland bei der Umsetzung von Big Data stehen. Hierzu wurden online und anonym 254 Entscheider aus deutschen Industrieunternehmen zwischen August und Oktober 2014 befragt.
Daten- und Informationsqualität war jahrelang nur ein Thema für IT-Spezialisten. Doch je größer die Datenbestände durch elektronische Datenverarbeitung werden, umso wichtiger wird für jedes Unternehmen eine gute Daten- und Informationsqualität.
Warum bringt ein Wechsel der strategischen Ausrichtung auf ein prozessorientiertes Datenqualitätsmanagement einen größeren Nutzen für die gesamte Organisation? Er schafft die überlebenswichtige Verknüpfung unterschiedlicher Management-Systeme in Organisationen.
Ohne ein effektives Datenqualitätsmanagement kein erfolgreiches Business Analytics
Business Analytics definiere ich als Gesamtheit aller Methoden und Werkzeuge zur Analyse von polystrukturierten Daten für eine nachhaltig gewinnorientierte Unternehmenssteuerung.
Was hinsichtlich dem Thema gute Datenqualität bereits für Business Intelligence sowie störungsfreier Unternehmensabläufe und Kundenservices gilt, ist für Business Analytics und Big Data erst recht eine erfolgskritische Notwendigkeit!
Die Veröffentlichung der DIN EN ISO 9001:2015 steht unmittelbar bevor. Trotz fortschreitender Digitalisierung nimmt die neue Norm keinen Bezug darauf, wie Unternehmen mit Daten umgehen sollen. Das ist eine gravierende Lücke.
Digitales Formularmanagement steigert die Effizienz - Voraussetzung für die Verbesserung ist einwandfreie Datenqualität
Ein Großteil von Formularen wird noch immer auf Papier ausgedruckt und per Hand ausgefüllt, anschließend wieder eingescannt und bestenfalls in einem Dokumentenmanagementsystem abgelegt und verschlagwortet. Digitales Formularmanagement bietet die Möglichkeit, diesen Prozess erheblich effizienter und damit wirtschaftlicher zu gestalten.
Durch die stark wachsende Anzahl datengetriebener Geschäftsmodelle gibt es keinen Ausweg für das Qualitätsmanagement, sich verstärkt mit dem Thema Datenqualität zu beschäftigen. Datenqualität als Risikofaktor ist schon etwas länger bekannt. Negative Auswirkungen schlechter Datenqualität auf das gesamte System einer Organisation werden zukünftig durchschlagender sein.
Beschäftige Dich intensiv mit Deiner Datenqualität und erkenne die wahren Hebel zur Operational Excellence!
Das Zitat „Wer sich mit Datenqualität intensiv beschäftigt, lernt sehr viel über die Stärken und Schwächen seiner Geschäftsprozesse und erkennt die wahren Hebel zur Operational Excellence!“ fasst prägnant zusammen, wie wichtig Datenqualität für den Erfolg eines Unternehmens ist. Daten und Prozesse sind eng miteinander verbunden. Nur durch die gezielte Auseinandersetzung mit der Qualität der eigenen Daten können Unternehmen die Mechanismen erkennen, die ihre Effizienz, Produktivität und Flexibilität bestimmen. In einer datengetriebenen Welt ist es unerlässlich, nicht nur auf die Daten selbst zu achten, sondern sie auch als Spiegel der eigenen Geschäftsprozesse zu betrachten.
Mit den effektiven Denkprozessen aus der TOC (Theory of Constraints) Durchbruchslösungen im Datenqualitätsmanagement schaffen
Ein Bewusstsein dafür, dass ein dringender Handlungsbedarf besteht ein übergreifendes und nachhaltiges DQM einzuführen, ist in vielen Organisationen noch gering ausgeprägt.
Wenn sich um das Thema Datenqualität gekümmert wird, dann meist auf lokale Einheiten beschränkt und situativ bedingt. Je nach Handlungsdruck werden immer wieder Einzelmaßnahmen durchgeführt. In der Regel stört schlechte Datenqualität den Flow von Prozessen und es erfordert immer wieder Nachbearbeitungsschleifen im laufenden Betrieb, bis ein Prozess effektiv abgeschlossen werden kann. Zusätzlich stören immer wieder die ad hoc initiierten Datenkorrekturmaßnahmen den Regelbetrieb.
Gute Datenqualität sichert den Erfolg von Omni-Channel-Strategien
Omni-Channel, das nächste große Ding im Retailing. Im Gegensatz zum Multi-Channel, wo Kunden die verschiedenen Vertriebskanäle hintereinander nutzen, bietet Omni-Channel die Möglichkeit die Vertriebskanäle parallel zu nutzen.
Stakeholder Management: Wie man skeptische Stakeholder gewinnt & innovative Projekte vorantreibt (Erfahrungen aus der Praxis)
14 September 2024
Wie identifizierst du die richtigen Stakeholder für dein Projekt?
Wie baust du Vertrauen zu Stakeholdern auf, die Veränderungen ablehnen?
Wie validierst du eine Geschäftsidee, bevor du sie Stakeholdern präsentierst?
Wie gehst du mit internen Widerständen gegen neue Projekte um?
Wie nutzt du das Feedback von Stakeholdern, um eine Idee zu verbessern?
Darüber spricht Christoph Pacher mit mit Dr. Anke Sax, Geschäftsführerin (COO/CTO), KGAL GmbH & Co. KG (KGAL), Marco Geuer, Head of Global Data Strategy & Solutions, FIEGE, und Karsten Keil, Mitglied des Management Boards (Vice President Group IT & Digitization), Schnellecke Logistics SE sowie Mitglied des Board of Directors bei Brighten Consulting.
Vom Datenchaos zur Data Driven Company: Warum Daten- und Prozessdurchgängigkeit Hand in Hand gehen
14 Januar 2024
Wie entwickelt man eine Datenstrategie?
Warum ist die einheitliche Betrachtung von Prozessen und Daten für die Transformation zu einem datengetriebenen Unternehmen entscheidend?
Welche initialen Schritte sind entscheidend für Unternehmen, um eine effektive Datendurchgängigkeit zu erreichen?
Darüber spricht Christoph Pacher mit Marco Geuer, Head of Global Data Strategy & Solutions, FIEGE.
Datenstrategie = Unternehmensstrategie - wie du wirklich data-driven wirst
03. August 2023
Was ist der Mehrwert als Unternehmen data-driven zu agieren? Und warum brauche ich für meine Datenstrategie zwingend eine Unternehmensstrategie?
Darüber spricht Christian Krug, Host des Podcasts Unf*ck Your Data, mit Marco Geuer, Head of Global Data Strategy & Solutions bei FIEGE.
The Data Culture Podcast - "Wie kann ich Datenteams zu Höchstleistungen führen?"
10. Oktober 2022
Wie bringe ich Datenteams zu Höchstleistungen? Das ist die Frage, die sich Carsten Bange mit seinem Gast Marco Geuer in dieser Folge stellt.
Es geht um Teamzusammenstellungen, die Rolle der Kultur und Data Governance, um die beste Leistung aus Data & Analytics Initiativen zu schöpfen.
BI or DIE Data Culture - "Data Governance mit Freude & Spirit"
15. Februrar 2022
Marco und Kai sprechen über die Vorurteile von Data Governance als anstrengend und bürokratisch und wie es besser gelöst werden kann.
BI or DIE Level Up 2022 - "Data Strategy & Governance"
27. Januar 2022
Marco spricht über Data Strategy, Data Governance und Data Driven Culture und wie dies alles zusammenhängt!
BI or DIE New Banking - "Data Governance als Business Case"
15. November 2021
Marco und Carsten sprechen über eines ihrer gemeinsamen Lieblingsthemen! Neben der Frage, warum das Thema für sie nicht langweilig ist, sprechen die beiden u.a. über: - Die Faszination und die Möglichkeiten von Data Governance. - Was die Rapid Data Performance Simulation ist und wie sie funktioniert. - Wie Data Governance sinnvoller Bestandteil der Business Intelligence wird. - Wie man sich dem Thema Business-Case getrieben nähert.
BI or DIE Data Talk - "Data Governance & Data Strategy"
16. Juli 2021
Kai-Uwe Stahl, Carsten Bange, Patrick Keller und Marco Geuer sprechen über das Thema "Data Governance & Data Strategy" und wie eine erfolgreiche Etablierung erfolgen kann.
Marco Geuer & Jonas Rashedi - #BusinessLovesDataGovernance
30. April 2021
Marco Geuer und Jonas Rashedi sprechen über Methoden und Erfolgsfaktoren bei der Einführung von Data Governance. Wie man das Business für das Thema begeistern kann und sogar als Multiplikator und Werber gewinnt. Es fallen Begriffe wie Ursache-Wirkungs Bäume, Rapid Data Performance Simulation, Leistungsfähigkeit von Daten und Accountability Partnership. Was es damit auf sich hat, erfahrt Ihr im Podcast. Uns hat es Spaß gemacht und wir hoffen Euch auch!
Marco Geuer & Jonas Rashedi - Data Governance ist ein Teamsport!
08. April 2021
Marco und Jonas unterhalten sich über den Mehrwert einer Data Governance und welche Faktoren für eine erfolgreiche Einführung maßgeblich sind. Es dreht sich im Kern um Kommunikation und Menschen zu einer gesteigerten Datenkompetenz zu befähigen. Data Governance ist eher mit einem Teamsport zu vergleichen. Häufig betrachten Organisationen eine Data Governance als eine Verordnung und führen diese eher technokratisch ein. Nach einiger Zeit tritt dann häufig Ernüchterung und Enttäuschung über den mäßigen Erfolg ein.
Data Exploration & Prototyping von KPI/Dashboards: Sichere Projektergebnisse & ein valides Reporting
Data Quality Management Online-Konferenz v. 02.12.2021
Der Vortrag zum Thema „Data Exploration & Prototyping von KPI und Dashboards – sichere Projektergebnisse und ein valides Reporting“ zeigte auf, wie FIEGE mit dem Rapid Data Performance Simulation (RDPS) Verfahren Investitionen in Data Analytics und Data Products ganz objektiv nach Erfolgswahrscheinlichkeiten auswählt – und die entsprechenden Umsetzung anschließend nachhaltig zum Erfolg führt.
Data Profiling - Daten endlich richtig verstehen & beurteilen
Erfahrungsbericht Rapid Data Performance Assessment (RDPA)
Wer Datenqualität und Prozessqualität als eine Einheit betrachtet, hat gute Zukunftsaussichten
Das Forschungsprojekt „World Management Survey“ beschäftigt sich mit der Einführung und Anwendung von Managementpraktiken in über 12.000 Unternehmen aus 34 Ländern. Es wurde gemessen, wie gut eine Organisation die wesentlichen Führungsmethoden in vier Bereichen beherrscht: Produktionsmanagement, Performance-Monitoring, Zielvorgaben und Talentmanagement.
Die Auswertung der Daten zeigt zwei wesentliche Erkenntnisse.
Ein Qualitätsmanagement-System (QMS) ist nur dann nachhaltig und zukunftsgerichtet, wenn Unternehmen ein Datenqualitätsmanagement (DQM) in das QMS integrieren. Denn ein solches Managementsystem ist entscheidend für die erfolgreiche Umsetzung der Digitalen Transformation.
Seit Jahren investieren Unternehmen in Qualitätsmanagementsysteme, um ihre Prozesse an den Kundenwünschen auszurichten. Trotz aller Erfahrungen und Weiterentwicklungen auf diesem Gebiet wurde die Qualität der Daten bisher nahezu vernachlässigt. Das soll sich mit einer überarbeiteten Version der Norm DIN EN ISO 9001, die 2015 veröffentlicht wird, ändern. Diese berücksichtigt verstärkt den risikobasierten Ansatz. Der Ansatz zielt darauf ab, frühzeitig unternehmensgefährdende Risiken zu berücksichtigen, zu bewerten und zu vermeiden. Dabei gibt es erste Anzeichen in Richtung Daten- und Informationsqualität.
Ein eigener Erfahrungsbericht mit einem Datenprovider
Vor einigen Wochen meldete sich telefonisch die Vertrieblerin eines Datenproviders bei mir mit der Frage, ob es für die ACT Gruppe interessant wäre für die Kundenakquise detaillierte Kontaktdaten von Unternehmen zu bekommen, die unsere Webseite besucht haben.
Grundsätzlich war ich interessiert und wollte wissen,
a) wie dies im Zusammenhang mit der ACT Webseite technisch gelöst wird und b) welche Daten mit welcher Qualität angeboten werden.
Zusätzlich zu den qualifizierten Adressen könne man uns auch entsprechende Ansprechpartner zur Verfügung stellen.
Datenqualitätsmanagement nach der "Friday Afternoon Measurement" Methode
Entscheidungsträger, Führungskräfte, Datenwissenschaftler und Manager müssen oft schnell beurteilen, ob sie einem Datensatz vertrauen können, ob sie ihn in eine Analyse einbeziehen oder ob eine neue Richtung einschlagen werden muss. Es gibt viele Möglichkeiten, aber die grundlegende Frage ist, "habe ich ein Problem mit der Datenqualität?"
Mit der Methode "Friday Afternoon Measurement (FAM)" von Thomas C. Redman, kann diese Frage schnell beantwortet werden. Die Methode richtet sich an Manager auf jeder Ebene, deren Entscheidungsfähigkeit stark von Daten abhängig ist. Mit der fortschreitenden Digitalisierung von Geschäftsprozessen steigt zunehmend das Risiko fehlerhafter Entscheidungen sowie einer verzögerten Erfüllung von Prozesszielen aufgrund schlechter Datenqualität. Die FAM-Methode hilft, das aktuelle Niveau der Datenqualität zu messen, die möglichen Auswirkungen gut einzuschätzen und entsprechende Handlungsoptionen abzuleiten. Die Methode ist unabhängig von Branche, Unternehmen, Prozesse und Daten einsetzbar.