Zum Hauptinhalt springen

The Data Economist | Establishing sustainable "Data Inspired & Digital Culture"

AI & Agile Way Of Working

- AI & Agile Wayof Working-

Das AI-Zeitalter ist das Zeitalter der „Könner“ nicht mehr das der „Wissenden“!

THE DATA ECONOMIST

Das Dilemma von Vertrauen, Verantwortung und Entscheidungen: Die Rolle einer datenorientierten Kultur

Machen ist krasser als Wollen

Kennt Ihr das? Die Daten sind sauber, die Kennzahlen überzeugend, das Dashboard klar und die mit KI erstellten Vorhersagen liefern plausible Handlungsempfehlungen, wie Entscheidungen verbessert werden können. Doch trotz all dieser Klarheit entscheiden Führungskräfte und Mitarbeiter oft "aus dem Bauch heraus".

Das Problem liegt häufig nicht in der Qualität der Daten, sondern darin, dass es im Unternehmen an einer Kultur mangelt, die die Mitarbeiter dazu befähigt, die Ergebnisse richtig zu interpretieren und ein sicheres Umfeld bietet auf deren Basis zu entscheiden. Auch wenn das Ergebnis einer datenbasierten Entscheidung vielleicht einmal nicht optimal ist, sollte die Gelegenheit bestehen, daraus zu lernen, ohne dafür bestraft zu werden.

Data Governance, der Schlüssel zu einer erfolgreichen datenintelligenten Organisationskultur

Definition: Was ist Data Governance? 

Data Governance (Datensteuerung) umfasst in Summe die Menschen, Prozesse und Technologien, die zur Verwaltung, zum Schutz und zur Steigerung des “Datenkapitals” einer Organisation benötigt werden, um allgemein verständliche, korrekte, vollständige, vertrauenswürdige, sichereauffindbare Unternehmensdaten und deren wertorientierte Nutzung garantieren zu können.

Data Governance: Was sind Ihre Unternehmens-Daten wert?

Wie Organisationen ihre Daten in Geld bewerten können und warum Data Governance sich selbst finanziert.

Viele Unternehmen hadern noch mit dem Gedanken eine Data Governance einzuführen und fragen sich, welchen Mehrwert hat eigentlich Data Governance? Natürlich kann man jetzt sagen, was gibt es da noch zu überlegen. Wer im Zuge der Digitalisierung wettbewerbsfähig bleiben möchte, kommt an einer Data Strategy und der Einführung einer Data Governance nicht vorbei. Zumindest liest man das permanent in der Fachpresse und hört es ständig von vielen Beratern. Andererseits ist es absolut berechtigt in diesem Zusammenhang die ökonomische Frage zu stellen, welchen Mehrwert in Geld bringt eine Data Governance der Organisation und wieviel bin ich bereit zu investieren bzw. wie wird mein ROI (Return On Invest) aussehen.

Data Strategy Lifecycle wirkungsvoll im Unternehmen einführen

Die Datenstrategie entscheidet zunehmend über den Erfolg des gesamten Unternehmens

Warum eine Data Strategy?

Ich denke, mittlerweile ist jedem Unternehmen klar geworden, dass der kompetente Umgang mit Daten und die Steigerung der Datenintelligenz ein wichtiger Erfolgsfaktor für die Wettbewerbsfähigkeit ist. Gezeigt hat sich in den letzten Jahren, dass bloßes experimentieren mit Daten und neuen Technologien wie Big Data, KI und Cloud auch kein Garant für Erfolg ist. Dies liegt meiner Meinung nach häufig an den von der Unternehmensstrategie abgekoppelten und isolierten Maßnahmen Daten gewinnbringend einzusetzen. Somit sind häufig weitere Silos entstanden, die eher verhindern, einen erkennbar positiven Effekt für den Unternehmenserfolg zu erzielen. Verstärkend kam hinzu, dass sich einerseits kein ROI (Return on Investment) einstellte und man zunehmend Geld verloren hat und andererseits wertvolle Zeit verloren ging, während andere Unternehmen an einem vorbeizogen, die es eher verstanden haben Daten zielwirksam zur Steigerung ihrer Wettbewerbsfähigkeit einzusetzen. Häufig sind es Unternehmen, die man nicht mal als Wettbewerber auf den Schirm hatte.

Data Strategy: Erfolgsfaktoren für nachhaltige Wettbewerbsvorteile durch KI-basierte Datenanalysen und Digitalisierung

Die Menge der Daten alleine ist kein entscheidender Wettbewerbsfaktor

Immer mehr Organisationen setzen auf datengestützte Analysen in ihrer Entscheidungsfindung und digitalisieren ihre Prozesse, Produkte und Services. Dabei wird verstärkt auf Verfahren der Künstlichen Intelligenz (KI) gesetzt. Doch häufig bleibt der erhoffte Erfolg aus. 

Es ist eine sehr verbreitete Annahme, dass die Auswertung großer Mengen an Kundendaten der Organisation einen uneinholbaren Wettbewerbsvorteil verschaffen kann. Dies beruht auf der These: Je mehr Kunden eine Organisation hat, desto mehr Daten kann diese zur Produkt- und Serviceverbesserung nutzen und damit weitere Kunden anziehen, von denen noch mehr Daten gesammelt werden können. 

Daten: Der Nährstoff für Wachstum, nicht das neue Öl!

Wie Datenintelligenz und Kreativität zusammen eine nachhaltige Wachstumsstrategie bilden

In der modernen Welt der Technologie, KI und Wirtschaft sind Daten oft als das "neue Öl" bezeichnet worden. Doch dieser Vergleich greift zu kurz und bringt einige negative Assoziationen mit sich. Öl und andere Rohstoffe sind begrenzt und werden durch Ausbeutung der natürlichen Ressourcen gewonnen, was oft zu Umweltschäden und ethischen Bedenken führt. Daten hingegen sind das Produkt menschlicher Intelligenz und Kreativität, und ihre Nutzung kann nachhaltig und ethisch verantwortungsvoll gestaltet werden.

Der Wert von genAI [25]

- Der Wert vongenAI-

Hör auf zu Spielen und mach endlich ernst!

Frag Deine genAI nach der Leistungsfähigkeit Deiner Daten und erforsche die Möglichkeiten der Wertschöpfung!

THE DATA ECONOMIST

Die Zukunft der Datenaufbereitung mit KI: Eine Revolution in der Datenanalyse

Wie künstliche Intelligenz den Aufwand in der Datenaufbereitung drastisch senkt und neue Freiräume für strategische Entscheidungen schafft

Künstliche Intelligenz (KI) hat in den letzten Jahren immense Fortschritte gemacht und beeinflusst zunehmend alle Bereiche von Technologie und Wirtschaft. Einer der wichtigsten Anwendungsbereiche, in denen KI große Veränderungen bewirken wird, ist die Datenaufbereitung – ein oft unterschätzter, aber kritischer Prozess in der Arbeit von Data Engineers und Data Analysts.

Self-Service-BI [19]

- Self-Service BI-

Self-Service BI ist so lange geil, bis inperformante Daten-Modelle die Kosten und Wartezeiten treiben. Es kann durchaus sinnvoll sein, auf seine Datenexperten zu hören und gemeinsam an performanten Datenprodukten zu arbeiten.

THE DATA ECONOMIST

Vorteile von komplementären Datenprodukten: Ein Mehrwert für Unternehmen und ihre Partner

Wie strategische Synergieeffekte von Datenprodukten zur Wertsteigerung beitragen

In der heutigen digitalen Wirtschaft spielen Datenprodukte eine entscheidende Rolle bei der Schaffung von Mehrwert für Unternehmen und ihre Partner. Komplementäre Datenprodukte bieten einen strategischen Ansatz, um den Wertschöpfungsprozess innerhalb eines Unternehmens und in seiner Beziehung zu Kunden und Lieferanten zu verbessern. Im Folgenden werden die Vorteile dieser komplementären Datenprodukte näher erläutert.

Warum ich kaum über AI spreche und viel über Data Driven?

Daten als Fundament: Warum der Erfolg von AI auf einer soliden Datenstrategie beruht

In den letzten Jahren hat Künstliche Intelligenz (AI), besonders GenAI (generative Artificial Intelligence),  enorm an Aufmerksamkeit gewonnen. Die Verheißungen von autonomen Fahrzeugen, intelligenten Assistenten und maschinellem Lernen haben eine Welle von Begeisterung und Interesse in der Geschäftswelt ausgelöst. Doch während AI oft als die Zukunft der Technologie gefeiert wird, gibt es einen entscheidenden Aspekt, der häufig übersehen wird: Die Daten, die diese Technologien antreiben.

Wissen teilen, Können stärken: Die Vorteile cross-funktionaler Teams im Zeitalter der AI

Wie AI und menschliche Zusammenarbeit in Cross-funktionalen Teams praktisches Können und nachhaltiges Wissen fördert und sichert

In der heutigen Unternehmenswelt, in der AI immer mehr Einzug hält, hat sich die Art und Weise, wie Wissen verteilt und angewendet wird, stark verändert. Traditionell war die Dokumentation der zentrale Mechanismus zur Wissensverteilung. Sie bleibt wichtig, aber es zeigt sich zunehmend, dass sie nicht ausreicht, um das Können in einem Unternehmen zu sichern und weiterzuentwickeln.