Zum Hauptinhalt springen

The Data Economist Blog (DE) | Etablierung einer Data Inspired & Digital Culture

Data Driven Company – Data Intelligence braucht Daten- und Prozessdurchgängigkeit

Erst der Dreiklang Datendurchgängigkeit, Prozessdurchgängigkeit und durchgängige Datenanalyse macht Unternehmen Data Driven und Customer Centric.

Für eine erfolgreiche Transformation zu einem datengetriebenen Unternehmen ist es wichtig Prozesse und Daten einheitlich zu betrachten und zu verstehen sowie Datendurchgängigkeit herzustellen. Dies bedeutet, dass Daten über verschiedene Abteilungen und Systeme hinweg nahtlos fließen können, in einer konsistenten Form vorliegen und die operativen Prozesse und Menschen durchgängig zu unterstützen.

Data Strategy, Data Science, Data Driven Company, Data Intelligence, Customer Centricity, Interoperability

Weiterlesen

  • Geändert am .
  • Aufrufe: 3456

Welche Einflussfaktoren entscheidend sind für erfolgreiche Data Products

Data Products vs. Data Projects

In der heutigen digitalen Welt generieren Unternehmen und Organisationen kontinuierlich große Mengen an Daten. Die Verarbeitung und Analyse dieser Daten hat sich zu einem wichtigen Instrument entwickelt, um Erkenntnisse und Einblicke zu gewinnen und wettbewerbsfähig zu bleiben. Während viele Organisationen früher Datenprojekte durchgeführt haben, um ihre Daten zu analysieren, verschiebt sich der Fokus inzwischen auf die Erstellung von Datenprodukten.

Data Governance, Data Strategy, Data Driven Culture, Data Products

Weiterlesen

  • Geändert am .
  • Aufrufe: 3714

The Data Culture Podcast - "Wie kann ich Datenteams zu Höchstleistungen führen?"

Wie bringe ich Datenteams zu Höchstleistungen? Das ist die Frage, die sich Carsten Bange mit seinem Gast Marco Geuer in dieser Folge stellt.

Es geht um Teamzusammenstellungen, die Rolle der Kultur und Data Governance, um die beste Leistung aus Data & Analytics Initiativen zu schöpfen.

  • Geändert am .
  • Aufrufe: 3715

Data Strategy Lifecycle wirkungsvoll im Unternehmen einführen

Die Datenstrategie entscheidet zunehmend über den Erfolg des gesamten Unternehmens

Warum eine Data Strategy?

Ich denke, mittlerweile ist jedem Unternehmen klar geworden, dass der kompetente Umgang mit Daten und die Steigerung der Datenintelligenz ein wichtiger Erfolgsfaktor für die Wettbewerbsfähigkeit ist. Gezeigt hat sich in den letzten Jahren, dass bloßes experimentieren mit Daten und neuen Technologien wie Big Data, KI und Cloud auch kein Garant für Erfolg ist. Dies liegt meiner Meinung nach häufig an den von der Unternehmensstrategie abgekoppelten und isolierten Maßnahmen Daten gewinnbringend einzusetzen. Somit sind häufig weitere Silos entstanden, die eher verhindern, einen erkennbar positiven Effekt für den Unternehmenserfolg zu erzielen. Verstärkend kam hinzu, dass sich einerseits kein ROI (Return on Investment) einstellte und man zunehmend Geld verloren hat und andererseits wertvolle Zeit verloren ging, während andere Unternehmen an einem vorbeizogen, die es eher verstanden haben Daten zielwirksam zur Steigerung ihrer Wettbewerbsfähigkeit einzusetzen. Häufig sind es Unternehmen, die man nicht mal als Wettbewerber auf den Schirm hatte.

Data Governance Strategy, Datenstrategie, Data Strategy, Data Driven Culture, Data Driven Company, Datadriven, Data Management Strategy

Weiterlesen

  • Geändert am .
  • Aufrufe: 9148

Data Catalogue – Beschleuniger der Datenkompetenz (Data Literacy)

Surfen durch den Datendschungel, Daten verstehen und Daten shoppen (Shopping for Data)

Haben Sie schon den Begriff „Shopping for Data“ gehört? Dieser wird gerne im Zusammenhang mit den Begriffen Data Catalogue und Data Democratization in einen Topf geworfen. Mit Data Democratization ist gemeint, dass Menschen einfach und pragmatisch auf jegliche Art von Daten, die sie für ihre Zwecke benötigen zugreifen und diese verwenden können, bzw. jederzeit bereit sind Daten mit anderen zu teilen. Das natürlich jederzeit compliancekonform. In Organisationen wird dies durch einen Data Catalogue ermöglicht oder auch immer häufiger gerne Data Marketplace genannt, auf dem Sie wie in einem Onlineshop auf Einkaufstour nach Daten und Datenprodukten gehen (Shopping for Data).

Datenmanagement, Data Governance, Data Catalog, Data Strategy, Data Catalogue, Data Literacy, Datenkompetenz

Weiterlesen

  • Geändert am .
  • Aufrufe: 30475

Data Strategy: Erfolgsfaktoren für nachhaltige Wettbewerbsvorteile durch KI-basierte Datenanalysen und Digitalisierung

Die Menge der Daten alleine ist kein entscheidender Wettbewerbsfaktor

Immer mehr Organisationen setzen auf datengestützte Analysen in ihrer Entscheidungsfindung und digitalisieren ihre Prozesse, Produkte und Services. Dabei wird verstärkt auf Verfahren der Künstlichen Intelligenz (KI) gesetzt. Doch häufig bleibt der erhoffte Erfolg aus. 

Es ist eine sehr verbreitete Annahme, dass die Auswertung großer Mengen an Kundendaten der Organisation einen uneinholbaren Wettbewerbsvorteil verschaffen kann. Dies beruht auf der These: Je mehr Kunden eine Organisation hat, desto mehr Daten kann diese zur Produkt- und Serviceverbesserung nutzen und damit weitere Kunden anziehen, von denen noch mehr Daten gesammelt werden können. 

Big Data, Master Data Management, Digitalisierung, Digitale Transformation, Data Governance, Datenanalyse, Datenstrategie, Data Strategy, Data Analytics, Artificial Intelligence, Künstliche Intelligenz, Dataperformance, Data Science

Weiterlesen

  • Geändert am .
  • Aufrufe: 7705

Data Governance, der Schlüssel zu einer erfolgreichen datenintelligenten Organisationskultur

Definition: Was ist Data Governance? 

Data Governance (Datensteuerung) umfasst in Summe die Menschen, Prozesse und Technologien, die zur Verwaltung, zum Schutz und zur Steigerung des “Datenkapitals” einer Organisation benötigt werden, um allgemein verständliche, korrekte, vollständige, vertrauenswürdige, sichereauffindbare Unternehmensdaten und deren wertorientierte Nutzung garantieren zu können.

Datenqualität, Data Quality Management, Digitale Transformation, Data Governance, Datenstrategie, Data Strategy, Data Catalogue, Data Ownership, Data Scope, Data Domain, Data Literacy, Datenkompetenz

Weiterlesen

  • Geändert am .
  • Aufrufe: 12875

Data Governance: Was sind Ihre Unternehmens-Daten wert?

Wie Organisationen ihre Daten in Geld bewerten können und warum Data Governance sich selbst finanziert.

Viele Unternehmen hadern noch mit dem Gedanken eine Data Governance einzuführen und fragen sich, welchen Mehrwert hat eigentlich Data Governance? Natürlich kann man jetzt sagen, was gibt es da noch zu überlegen. Wer im Zuge der Digitalisierung wettbewerbsfähig bleiben möchte, kommt an einer Data Strategy und der Einführung einer Data Governance nicht vorbei. Zumindest liest man das permanent in der Fachpresse und hört es ständig von vielen Beratern. Andererseits ist es absolut berechtigt in diesem Zusammenhang die ökonomische Frage zu stellen, welchen Mehrwert in Geld bringt eine Data Governance der Organisation und wieviel bin ich bereit zu investieren bzw. wie wird mein ROI (Return On Invest) aussehen.

Datenqualität, Datenqualitätsmanagement, Data Quality Management, Datenmanagement, Data Governance, Datenqualität messen, Datenwert, Data Value, Data Governance Strategy, Datenstrategie, Wert von Daten, Data Literacy, Datenkompetenz

Weiterlesen

  • Geändert am .
  • Aufrufe: 10956

Data Governance: Vom Model Driven Design (MDD) zum Data Catalog

Wie Organisationen von einer lückenhaften Nachdokumentierung zu einem transparenten Datenmanagement kommen.

Herausforderung von Data Governance

Eines der Ziele von Data Governance ist es eine möglichst gute Transparenz über die Verarbeitung und Verwendung von Daten über die Systeme hinweg herzustellen, um den Grad der Compliance-Konformität festzustellen und stetig zu monitoren sowie ein compliance-konformes Verhalten beim Umgang mit Daten zu fördern. Zusätzlich ermöglicht die Transparenz stetig Schwächen der Leistungsfähigkeit von Daten zu erkennen und Maßnahmen zur Verbesserung abzuleiten. Dies fördert die Qualität von Datenanalyse- und Digitalisierungsprojekten.

Business Intelligence, Business Analytics, Business Information Excellence, Data Governance, Model Driven Design, Datenmodellierung, Metadatamanagement, Data Catalog, Datenkatalog

Weiterlesen

  • Geändert am .
  • Aufrufe: 10262

Data Governance: Vom Data Profiling zur ganzheitlichen Leistungsbewertung von Daten

Wie Data Governance zum Innovator wird und Mehrwert liefert

Viele Unternehmen wandelten sich in den letzten Jahren zu agilen Organisationsformen, um sich den Herausforderungen von schnellen Anforderungsänderungen besser stellen zu können. Auch das Unternehmen, für welches ich tätig bin, befindet sich mitten in diesem Wandel. Hinzu kommt, dass Daten und datengetriebene Prozesse immer stärker im Fokus stehen. Wer einen Vorsprung in der Datenintelligenz erlangt und diesen optimal zu nutzen weiß, erlangt auch einen erfolgskritischen Wettbewerbsvorsprung, den es stetig auszubauen bzw. auf lange Sicht zu halten gilt.

Datenqualität, Business Intelligence, InfoZoom, Business Analytics, Datenqualitätsmanagement, Data Quality Management, Data Governance, Data Profiling, Model Driven Design, Datenmodellierung

Weiterlesen

  • Geändert am .
  • Aufrufe: 19604

Prozessorientierter Data Quality Index erfolgreich einführen

Wer Datenqualität und Prozessqualität als eine Einheit betrachtet, hat gute Zukunftsaussichten

Das Forschungsprojekt  „World Management Survey“ beschäftigt sich mit der Einführung und Anwendung von Managementpraktiken in über 12.000 Unternehmen aus 34 Ländern. Es wurde gemessen, wie gut eine Organisation die wesentlichen Führungsmethoden in vier Bereichen beherrscht: Produktionsmanagement, Performance-Monitoring, Zielvorgaben und Talentmanagement.

Die Auswertung der Daten zeigt zwei wesentliche Erkenntnisse.

Datenqualität, Datenqualitätsmanagement, Prozessmanagement, ISO9001, Datenqualität messen, Datenqualität verbessern, Datenqualitätskriterien

Weiterlesen

  • Geändert am .
  • Aufrufe: 11299

Datenqualität messen: Mit 11 Kriterien Datenqualität quantifizieren

Einleitung

Für eine optimale Bewertung und Messung der Datenqualität sowie der Ableitung gezielter Verbesserungsmaßnahmen, müssen im Vorfeld entsprechende Datenqualitätskriterien definiert werden.

Datenqualitätssicherung, Datenqualität messen, Datenqualität verbessern, Datenqualitätskriterien, Data Quality Dimensions

Weiterlesen

  • Geändert am .
  • Aufrufe: 109647

Digitalisierung: Schlüsselfaktoren erfolgreicher Innovationen

Wie lässt sich eine Branche revolutionieren?

In der April-Ausgabe des Harvard Business Manager habe ich einen interessanten Artikel zu den Schlüsselfaktoren von erfolgreichen Innovationen gelesen.

Nachfolgend eine kurze Zusammenfassung des Artikels.

Stelios Kavadias, Kostas Ladas und Christoph Loch1 gingen im Rahmen einer Studie der Frage nach: Wie lässt sich eine Branche revolutionieren? Hierzu untersuchten sie 40 Unternehmen aus unterschiedliche Branchen mit unterschiedlich erfolgreichen Geschäftsmodellen.

Technik und Markt verbindet

Erkenntnisse aus der Studie können wie folgt zusammengefasst werden.

Business Analytics, Innovationsmanagement, Digitale Transformation, Geschäftsmodelle, Innovation

Weiterlesen

  • Geändert am .
  • Aufrufe: 8754

Das Datenqualitätsniveau bestimmt die Ergebnisqualität von Sprachassistenzsystemen

Wer "ja" zur Digitalisierung sagt, muss auch "ja" zu besserer Datenqualität sagen

"76% aller Organisationen glauben, dass ungenaue Daten ihre Fähigkeit behindert, ein herausragendes Kundenerlebnis zu bieten (Experian, DQ-Studie 2016)." 

Alles deutet darauf hin, dass wir zukünftig immer stärker Sprachassistenzsysteme nutzen werden. Der prominenteste Vertreter ist Siri. Mit dem zunehmenden Erfolg zogen Google und Amazon nach. Im Bereich der Daten-Analyse ist der bekannteste Vertreter Watson von IBM. Weitere werden sicherlich folgen.

Datenqualität, Business Intelligence, Business Analytics, Big Data, Datenqualitätsmanagement

Weiterlesen

  • Geändert am .
  • Aufrufe: 7711

Wie Sie schnell bewerten können, ob Sie ein Problem mit der Datenqualität haben

Datenqualitätsmanagement nach der "Friday Afternoon Measurement" Methode

Entscheidungsträger, Führungskräfte, Datenwissenschaftler und Manager müssen oft schnell beurteilen, ob sie einem Datensatz vertrauen können, ob sie ihn in eine Analyse einbeziehen oder ob eine neue Richtung einschlagen werden muss. Es gibt viele Möglichkeiten, aber die grundlegende Frage ist, "habe ich ein Problem mit der Datenqualität?"

Mit der Methode "Friday Afternoon Measurement (FAM)" von Thomas C. Redman, kann diese Frage schnell beantwortet werden. Die Methode richtet sich an Manager auf jeder Ebene, deren Entscheidungsfähigkeit stark von Daten abhängig ist. Mit der fortschreitenden Digitalisierung von Geschäftsprozessen steigt zunehmend das Risiko fehlerhafter Entscheidungen sowie einer verzögerten Erfüllung von Prozesszielen aufgrund schlechter Datenqualität. Die FAM-Methode hilft, das aktuelle Niveau der Datenqualität zu messen, die möglichen Auswirkungen gut einzuschätzen und  entsprechende Handlungsoptionen abzuleiten. Die Methode ist unabhängig von Branche, Unternehmen, Prozesse und Daten einsetzbar.

Datenqualität, Datenqualitätsmanagement, Datenmanagement, Datenqualitätsmethoden, Datenqualität messen, Datenqualität verbessern

Weiterlesen

  • Geändert am .
  • Aufrufe: 14685

Ein Qualitätsmanagementsystem (QMS) ohne ein integriertes Datenqualitätsmanagement (DQM) hat in einer digitalisierten Welt keine Zukunft

Durch die stark wachsende Anzahl datengetriebener Geschäftsmodelle gibt es keinen Ausweg für das Qualitätsmanagement, sich verstärkt mit dem Thema Datenqualität zu beschäftigen. Datenqualität als Risikofaktor ist schon etwas länger bekannt. Negative Auswirkungen schlechter Datenqualität auf das gesamte System einer Organisation werden zukünftig durchschlagender sein.

Datenqualität, Business Analytics, Datenqualitätsmanagement, Prozessmanagement, Risikomanagement, Digitale Transformation

Weiterlesen

  • Geändert am .
  • Aufrufe: 7476